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Abstract

The intensity issue of hurricanes is addressed in this paper using the angular momentum 

budget of a hurricane in a storm relative cylindrical coordinates, and a scale interaction approach. 

In the angular momentum budget in storm relative coordinates, a large outer angular momentum 

of the hurricane is depleted continually along inflowing trajectories. This depletion occurs via 

surface and planetary boundary layer friction, model diffusion, and ‘cloud torques’, the latter is a 

principal contributor to the diminution of outer angular momentum. The eventual angular 

momentum of the parcel near the storm center determines its final intensity. The scale interaction 

approach is the familiar energetics in the wave number domain where the eddy and zonal kinetic 

energy on the hurricane scale offer some insights on its intensity. Here, however, these are cast 

in a storm centered local cylindrical coordinate as a point of reference. The wave numbers 

include azimuthally averaged wave number 0, principal hurricane scale asymmetries (wave 

numbers 1 and 2, determined from data sets) and other scales. The main questions asked here 

relates to the role of the individual cloud scales in supplying energy to the scales of the 

hurricane, thus contributing to its intensity. A principal finding is that cloud scales carry most of 

their variance, via organized convection, directly on the scales of the hurricane. The generation 

of available potential energy and the transformation of eddy kinetic energy from the cloud scale 

are in fact directly passed on to the hurricane scale by the vertical overturning processes on the 

hurricane scale. Less of the kinetic energy is generated on the scales of individual clouds that are 

of the order of a few km. The other major components of the energetics are the kinetic to kinetic 

energy exchange and potential-to-potential energy exchange among different scales. These 

occur via triad interaction and were noted to be essentially downscale transfer, i.e., a cascading 

process. It is the balance among these processes that seem to dictate the final intensity.
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1. Introduction

In this paper we explore two avenues for the hurricane intensity issue. Both of these are 

diagnostic approaches and are applied here to the data sets derived from a very high-resolution 

forecast model. A somewhat reasonable hurricane intensity forecast from a high-resolution 

model was necessary in order to portray the workings of the proposed diagnostic frameworks. 

The two approaches portrayed here can be labeled the angular momentum based diagnosis of 

hurricane intensity and a scale interaction based diagnosis of the storm’s energetics. In the 

former approach, a reservoir of high angular momentum air from the outer reaches of the 

hurricane has a large control on its intensity. That outer angular momentum is affected by the 

torques the parcels experience as they move towards the high intensity region. The latter 

approach asks about implications of the cloud scales on the eventual energy (that indirectly 

relates to the intensity) of a hurricane.

The initial data sets for this study came from the ECMWF operational analysis plus 

dropwindsonde data sets from research aircraft and satellite data. A list of acronyms appears in 

Table 1. Furthermore, this study is based on a somewhat realistic simulation of a hurricane 

(Hurricane Bonnie of 1998) that was generated using a non-hydrostatic microphysical meso- 

scale model (the MM5). The model output data sets were used here to carry out the diagnostic 

enquiries.

This study became possible due to two recent advancements in data and modeling. 

CAMEX-3 and CAMEX-4 are recent field experiments where joint data initiatives of NASA, 

NOAA and the U.S. Air force provided an extensive coverage of observations. They deployed 

as many as six research aircraft for the surveillance of hurricanes on a daily basis. These 

research aircrafts provided as many as a total of 100 dropsondes per day covering profiling data
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for winds, temperature, humidity and pressure. In addition to these, a NASA aircraft provided 

specialized moisture profiles from an instrument called LASE. Another major data set was a XA 

degree latitude/longitude operational analysis data of ECMWF. Using these data sets, we 

performed variational data assimilation, Rizvi et al. (2002) and Kamineni et al. (2003, 2004), to 

analyze the CAMEX storms of the years 1998 and 2001. This mix of data sets provides a unique 

coverage of observations for hurricane modeling.

In the modeling area, it is now possible to carry out high-resolution simulation with 

meso-scale non-hydrostatic microphysical models. Numerous recent applications with the 

NCAR MM5 model have shown the possibility for such simulation. Braun (2002) analyzed the 

storm structure and eye-wall buoyancy of Hurricane Bob using a multiply nested MM5 model 

with moving nest capability and demonstrated reasonable distributions of vertical motion in the 

eyewall. Similar studies were carried out by different research groups to resolve the cloud-scale 

features of hurricanes using MM5 model, e.g., Bao et al. (2000), Braun and Tao, (2000), Chen 

and Yau, (2001), Davis and Bosart, (2001), Davis and Trier, (2002), Zhang et al. (2003), and Liu 

et al. (1999). A multiple nested model with an inner resolution of 1 km provides the possibility 

for asking questions on the role of model’s deep convection on the intensity issue of hurricanes.

In his seminal paper on atmospheric energetics in the wave number domain, Saltzman 

(1957, 1970) laid the foundations for studies of scale interactions. Exploring the energy 

exchange among waves and waves, and waves and zonal flows, he portrayed the mechanism for 

the driving of the middle latitude zonal flows (i.e., the zonally averaged jets) in the atmosphere. 

That framework was in spherical coordinates. For studies of a hurricane it is relatively 

straightforward to cast this system on to a polar coordinate system, details of which are provided 

in Appendix 1. This transformation provides information on the kinetic and potential energy
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exchange among the azimuthally average flows and other azimuthal waves. The cloud 

(convection) scale being much smaller than that of the hurricane, the mode of communication of 

information from the cloud scale to the hurricane scale was not clearly apparent. The scale of 

convection (updrafts and adjacent downdrafts) is of the order of a few kilometers whereas the 

scale of hurricane is of the order of several hundreds of kilometers. Clearly an issue of scale 

interaction needs exploring in this context. A budget of kinetic energy for the scales of the 

hurricane can be revealing on its intensity. The angular momentum perspective starts with a 

large reservoir of high angular momentum air at large radii. That air is generally brought into the 

storms interior along inflow channels of the lower troposphere. That large angular momentum 

(following parcel motion) is depleted by the surface and internal friction torques (cloud torques) 

and by the pressure torques. The parcel arrives at inner radii where the storm intensity (the 

maximum wind of the hurricane) is explicitly determined from the value of the angular 

momentum the parcel arrives with. This paper attempts to provide some insight on these two 

different approaches for the understanding of hurricane intensity.

2. Observational Aspects:

Hurricane Bonnie started out as a tropical depression to the east of Antilles near 50° W 

and 15° N on August 19, 1998 around 1200 UTC, slowly moving in a northwesterly direction as 

shown in Fig. 1. The tropical storm stage was reached on August 20 at 2000 UTC, and the 

hurricane force winds were first noted on August 22 at 0000 UTC. This hurricane made a 

recurvature near the North Carolina coast and weakened to tropical storm force winds at 1800 

UTC on August 27, 1998. This storm was most intensely monitored by hurricane reconnaissance 

aircraft. Our study covers a 72-hour period between 22 and 25 August 1998. During this period, 

Hurricane Bonnie’s maximum winds varied between 33.5 to 51.5 ms'1. The satellite visible
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imagery during this period (Fig. 2) showed a well-defined storm with active banding to its south. 

However, after recurvature and a merger with a front, the cloud cover was elongated 

northeastwards. The storm imagery appears similar to that seen in many Category 3 storms of 

the Atlantic basin, here the maximum winds were close to 115 mph (51.5 ms"1). We shall not 

describe the detailed structure of Hurricane Bonnie here since this is a well-studied storm, and is 

described in some detail by Pasch et al. (2001) in their seasonal summary and our laboratory; 

Rizvi et al. (2002).

The data sets for this study came from diverse sources: ECMWF, CAMEX-3 and 

satellite data sets. The initial state and boundary conditions for this modeling study was prepared 

using the following data sets: (i) Operational real-time ECMWF’S analyzed data files (provided 

at 0.5 degrees lat/long grid and 28 vertical levels.

1) Six research aircrafts provided dropsonde and special moisture profiling data sets (the 

LASE instrument). There was mid tropospheric surveillance from two NOAA P3 

aircraft, a NOAA G4 near the tropopause level, a NASA P3 aircraft, a NASA DC8 

(flying near the 250 hPa level), and a NASA ER2 flying near 60,000 feet in the lower 

stratosphere. These data sets were analyzed using our FSU variational data assimilation 

(3DVAR) following Rizvi et al. (2002) and Kamineni et al. (2003, 2004) where the 

hurricane forecast impacts from these additional observations of the CAMEX field 

campaign were addressed. This analysis was carried out on a spectral resolution of T170 

(transform grid separation near 70 km).

2) These data sets were next subjected to physical initialization (i.e., rain rate initialization) 

following Krishnamurti et al. (1991, 2001) Here rain rate estimates were derived from the 

Microwave Instruments on board TRMM and three DMSP satellites.
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3) These analyzed data sets were simply interpolated using bi-cubic splines on to a variable 

grid resolution of the MM5 model used in this study. 

a. The NCAR-PSU MM5 Model

The numerical simulation of Hurricane Bonnie (1998) was carried out using the 

Pennsylvania State University-National center for Atmospheric research (PSU-NCAR) non­

hydrostatic fifth-generation Mesoscale Model (version 3.6). A 72-hr simulation of Hurricane 

Bonnie (0000 UTC 22 August - 0000 UTC 25 August 1998) was carried out using a variable 

resolution nesting configuration. Here we use four domains (Fig. 1) with a horizontal grid 

spacing of 27, 9, 3 and 1 km and having domain size of 98x94, 186x222, 369x444, 501x501 grid 

points respectively. These grid meshes include 23 vertical half sigma (o) levels. The 27 km and 

9 km domains are one-way nested whereas the 3 km and 1 km nests are two-way nested. The 

physics options used for the coarser grids at 27 km and 9 km included the Betts Miller cumulus 

parameterization (Betts and Miller 1986, 1993), a simple ice explicit scale cloud microphysics 

scheme (Dudhia, 1989), the MRF planetary boundary scheme (Hong and Pan, 1996), and a cloud 

radiative scheme of Dudhia (1989). The physics options for the 3 km and 1 km grids were 

similar to the coarse grid simulations except that no cumulus parameterization scheme was 

deployed, and convection was explicitly handled.

The combined 6-aircrafl CAMEX flights for the surveillance of an entire storm were only 

conducted on a few successive days. Thus it was not possible to validate in detail the 

performance of the MM5 model. However, the simulated details, at the high-resolution, were 

sufficiently realistic in terms of structure, motion and intensity to carry out the main objectives of 

this study, which are the angular momentum and the scale interaction perspectives. The 

observed maximum reported winds from the National Hurricane Center for days 1, 2 and 3 of
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this study were 46, 51 and 51 ms'1 and the corresponding model predicted maximum winds at 

850 hPa level were around 27, 35 and 45 ms'1 respectively. The central pressure comparisons 

were: observed estimates 962, 954 and 963 hPa and the model predicted values were 1002, 996 

and 984 hPa. The observed and predicted tracks of Hurricane Bonnie were illustrated in Fig. 1. 

There are clearly some track errors but that was not a primary issue here. It is our experience 

that ensemble averaging of tracks from multimodels appears to generally do better than single 

models, Krishnamurti et al. (2000), Williford et al. (2003). Some of the initial state fields are 

illustrated in Figs. 3 a,b,c. The sea level pressure on August 22, 1998 at 0000 UTC, shown in 

Fig. 3a, depicts a low-pressure system to the southeast of the regional model domain. The 

central pressure at this time was around 1006 hPa and the maximum winds were 24 ms’1. Strong 

pressure gradient to the north was indicative of the strong trades. The scale of this closed low- 

pressure field extended from 71 °W to 65 °W. The tangential wind maxima (Fig. 3b) at the initial 

time were around 24 ms'1 to the north of the storm and were of the order of 13 ms'1 to the south 

of the storm. The weakest winds are located over the storm center. The field of total angular 

momentum (in a storm relative frame of reference) is illustrated in Fig. 3c. As to be expected, 

the angular momentum increases at increasing radius. Values near the storm’s center are around 

0.2 x 10' ms' and increase to around 16 x 10' ms' towards the northwest of this domain. 

Larger values at increasing radius south of the storm are not covered in this illustration.

Figures 4 a,b,c show the streamline isotachs at the 850 hPa level from the forecasts of the 

meso-scale model at the end of days 1, 2 and 3. The northwestward motion of the storm is 

reasonably captured by the forecast. An interesting and prominent feature is the evolution of an 

asymptote of convergence to the south (by day 3 of forecast, Fig. 4c). This feature, in storm 

relative coordinates, was an important inflow channel for Hurricane Bonnie.
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3. The angular momentum approach on the interpretation of hurricane intensity

The angular momentum perspective starts with a large reservoir of high angular 

momentum air at the large radii. That air is generally being brought into the storm’s interior 

mainly along inflow channels of the lower troposphere. That large angular momentum 

(following parcel motions) is depleted by the surface and internal frictional torques, by pressure 

torques, and by cloud torques. The parcel arrives at the inner radii where the storm intensity (the 

maximum wind of the hurricane) is determined by the value of the angular momentum the parcel 

arrives with at that location. This could be called an outer thrust that seemingly determines the 

hurricane’s intensity. The weakness of this argument is that the inflow channel is assumed to be 

a prescribed entity here. One can ask how did that come about? An inner thrust, a second 

perspective, calls for a detailed knowledge of the storm clouds. Knowing better microphysics, 

we can perhaps model these clouds better, and these clouds may be the ones that carve out the 

inflow channels in the first place. The angular momentum story could well be a consequence of 

a systematic and organized cloud growth. Clearly, carefully designed numerical experiments are 

needed to sort out these outer and inner thrust issues in their correct perspectives for addressing 

the sensitivity of hurricane intensity to various parameters. Most likely, these issues are inter- 

coupled.

For the distribution of angular momentum in storm relative coordinates, we map the field 

of M = V0r + fr2/2. The total angular momentum at the 850 hPa level (Fig. 3b) is larger at 

increasing V, i.e., away from the storm center. At large radii, fr2/2 exceeds Ver and this

distribution of angular momentum at outer radii looks almost the same for most storms.

The angular momentum equation is defined by multiplying the tangential equation of 

motion by the radial distance r (from the storms center):
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— = Fgr~ — where — = (V -C)« V (1)dt 0 p 39 dt v '

dM , the change in angular momentum, is calculated in a storm relative frame of reference
dt

1 ^
(C denotes the storm motion vector) and Fer is the frictional torque and-------denotes the

p 86
pressure torque. The change in angular momentum from pressure torques is given by:

dM _ 1 dp
(2)

dt p SO

or the corresponding tangential velocity change is given by

dK y»yr i ^ (3)
dt r p 86

The intensity change from pressure torques can be expressed by:

dVe _ VgVr 1 1 dp 
dt r r p 86

This contribution to intensity changes arising from the pressure torques can be estimated 

following three dimensional parcel trajectories. Once the change in Vor+ fr2/2 contributed by 

torques is known, then it is easy to compute the change in the intensity V@ following segments of 

parcel motions that arise from effects of each type of torques. Specifically we can tailor such a 

budget to the maximum intensity of the storm. This is further discussed in Section 5 of this 

paper.

One of the well-known pressure asymmetry in hurricanes arises from the so-called ‘Beta 

Gyres’. If the symmetric part of the pressure field of a hurricane is removed from its total 

pressure field, then one can visualize these beta gyre structures. The structure generally contains 

higher pressures to the right of the storm’s center and lower pressure to its left. Figure 5 

illustrates this structure for hurricane Bonnie for the sea level pressure from day 3 of forecast.

10



The presence of a beta gyre implies the presence of pressure torques. This is usually on rather 

larger scales, i.e. azimuthal wave numbers 1 and 2 and the amplitude of this torque is rather 

small. Another contributor to pressure torque comes from the deep convective elements 

(simulated by the high resolution model) that carry pressure perturbations. With vertical motions 

of the order of one to 10 ms'1, small-scale pressure perturbations of the order of a few hPa on the 

scale of these deep convective elements abound in the predicted pressure fields. Because of the 

smaller horizontal scales of these convective elements, these perturbations can convey robust 

local pressure torques. However, on either side of these pressure perturbations, opposite signs of 

the azimuthal pressure gradients are found, thus the increase and decrease of angular momentum 

essentially cancel along segments of inflowing trajectories from these pressure perturbations. 

a) Frictional Torques

In the version of the MM5 that is used in our study, the surface fluxes of momentum are 

defined via a Bulk Aerodynamic Formula, Deardorff (1972) and Grell et al. (1995). Here the 

constant flux layer is 86 meters deep. The disposition of surface fluxes above the constant flux 

layer within a PBL follows the MRF PBL scheme that was based on the work of Hong and Pan 

(1996). This is a non-local scheme that permits counter gradient fluxes of moisture by large 

scale eddies. The eddy diffusivity coefficient for momentum is a function of the friction velocity 

u* and the PBL height is a function of a critical Bulk Richardson number. The vertical 

disposition of these sub grid scale surface momentum fluxes are carried out using the K- theory. 

The profiles of implied sub grid eddy momentum fluxes determine the vertical distribution of 

surface fluxes. The frictional torques, Fgr , do have vertical distributions. They largely mimic 

the surface torques through several vertical levels.
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The outputs of the vertical fluxes of momentum between the surface level and the top of 

the PBL were stored for each hour of the forecast. In addition to these, the MM5 includes 

parameterization for the sub grid scale vertical diffusion of momentum that was also retrieved 

and stored. The resolved vertical fluxes of momentum by shallow and deep convection were 

explicitly calculated from the fields of u, v, and w. These were also stored at intervals of one 

hour. These provided a complete inventory of the momentum fluxes at surface, the PBL and the 

rest of the model column. The large outer angular momentum of inflowing air is constantly 

eroded by the frictional torques. This field varies from hurricane to hurricane largely due to 

different distribution of wind speeds, storm size and from the dependence of the diffusive 

exchange coefficients as a function of height and the Richardson Number. 

b) Cloud Torques

Along segments of parcel trajectories, active cloud elements contribute to sizeable 

torques - we have designated these as cloud torques. The cloud torques appear to be a major 

contributor to the modification of angular momentum of inflowing parcel segments where model 

clouds were present. In the x-y-z frame of reference, cloud torques can be expressed by

dM d= -r — W'V' (5)
dt dz 0

(here we are disregarding the horizontal eddy fluxes). Along the inflowing trajectory we identify 

a segment traversed by the parcel in a time At (across significant cloud element). The 

corresponding change of angular momentum across that segment is

AM = -r^-W'VgAt (6)
dz

The over bar on the right hand side denotes an average value across model simulated cloud 

elements within a trajectory segment. A net vertical divergence of eddy flux of momentum
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-)----WVg results in a net diminution of angular momentum. This is consistent with the increase
dz

of resolvable eddy flux W'Vg as we go up from the ocean surface. The outer angular momentum 

is constantly being drained to the upper levels by the cloud turbulence. These results are 

presented in Section 5.

If a model forecast provides reasonable storm intensity, then it is possible to carry out an 

intensity budget using the angular momentum principle as a frame of reference.

4. The Scale Interaction Perspective

The hurricane’s scale can be described by a few azimuthal wave numbers (e.g. wave 

number 0, 1,2) that was noted in our analysis of the rainwater mixing ratio and Krishnamurti and 

Sheng (1985a,b). The field of rainwater mixing ratio in these high-resolution forecasts carries 

the signature of individual deep convective cloud elements. Figures 6 a,b illustrate the predicted 

rainwater mixing ratio at the 850 hPa level for days 2 and 3 of forecast. An azimuthal spectral 

analysis of these fields shows that a sizeable portion of the variance of the rainwater mixing ratio 

is accounted for by the first few harmonics. In Figs. 7a,b we show the power spectra of the 

rainwater mixing ratio for the initial time (shown as t=l) and at hour 24 (shown as t=2). The 

results for radii 0-40 km, 40-200 km and 200-380 km are presented here. At radii less than 200 

km, considerable amount of the power resides in these low wave numbers. At the outer radii 

(200-380 km) the distribution shifts to smaller scales. The same result emerges when we 

examine the azimuthal spectra of the tangential velocity. The larger scales of the rainwater 

mixing ratio spectra are a clear reflection of the organization of convection. It thus appeared 

reasonable to designate wave numbers 0, 1, and 2 as the hurricane scales. On the other hand, the 

scales of the individual deep convective clouds appear to reside around the azimuthal wave 

numbers 20 to 30. Following Saltzman (1957, 1970), it is of interest here to explore the
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interactions between the hurricane and the cloud scales. These interactions can be broadly 

described by (a) Available Potential to Eddy Kinetic; (b) Eddy Kinetic to Eddy Kinetic; and (c) 

Available Potential to Available Potential. In somewhat further detail, the following are twelve 

salient and grouped energy exchange components that comprise the total system. (Appendix 1 

includes the mathematical details).

i) < P.-Ko > is the conversion of azimuthally averaged (subscript o) potential energy (P) to the

azimuthally averaged kinetic energy (K). This is a mechanism for the maintenance of 

hurricane intensity. This is akin to warm air rising and relatively colder air sinking from the 

Hadley type vertical overturning. In our hurricane domain, which encloses the entire 

troposphere below 100 hPa and the entire atmosphere within r < 500 km, the rising of 

warmer air occurs near the eye wall clouds and the rain bands. The sinking of relatively 

cooler air occurs outside of the rain band and inside of the eye wall.

ii) < Pr K,> denotes long wave (subscript /) vertical over turnings on the salient asymmetric

scale of the hurricane such as azimuthal wave numbers 1 and 2. Since this overturning arises 

from a quadratic nonlinearity among vertical velocity and temperature on the individual long 

wave scales, this can only contribute to an in-scale energy exchange, i.e., available potential 

energy of wave number 1 can only generate eddy kinetic energy for wave number 1, the 

same being true for wave number 2. These overtumings generate eddy kinetic energy, thus 

contributing to an asymmetric velocity maximum. These waves generally exhibit phase 

locking, thus normally adding up to a single velocity maximum describing the principal 

hurricane asymmetry. It is relevant to make a note on the eye wall convection here. There 

has been much discussion on eye wall convection and its possible impact on hurricane 

intensity (Braun, 2002). Along a circular eye wall, if several tall cumulonimbus clouds are
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located along its circular geometry, then the possibility clearly exists for the clouds to 

directly impact wave number zero. The azimuthally averaged heating along the eye wall 

would generate azimuthally averaged potential energy. That can be directly converted to 

azimuthally averaged kinetic energy (on the scale of wave number 0) from the vertical 

overtumings (ascend along the eye wall and descend inside and outside of the eye wall). 

Here we can see a direct role of organized clouds amplifying the hurricane intensity. 

Furthermore, local variations of deep convection along the eye wall can also produce local 

asymmetry in vertical circulations, local generation of available potential energy and local 

conversion to eddy kinetic energy for higher wave numbers such as 1,2, and 3. Thus, local 

enhancement of intensity can also arise from the presence of organized local manifestation of 

the cloud scale vertical overtumings (akin to local Hadley type overturning), 

hi) <PcK> is the contribution from the smaller scale (cloud scale - subscript c) overturning.

This can only produce eddy kinetic energy on the same scales because of the previously

stated quadratic nonlinearity - V <°C‘T~- . w is the vertical velocity and T is the temperature
1 P

at those scales.

iv) (H0 PU} is the generation of available potential energy from heating, also arises from a

quadratic nonlinearity (i.e. the product of heating and temperature) and as such this can only 

generate potential energy on the scale of that heating. The azimuthally averaged (wave 

number 0) heating generates available potential energy only on this scale,

v) (//, -P,) is an in-scale generation of potential energy from the long wave scales of heating.

vi) (Hc • Pc) is the smaller scale heating and can only generate available potential energy on the 

same (smaller) scales.
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vii) (Ps ■ P,) is the nonlinear exchange of available potential energy from waves to waves. The

available potential to available potential is a triad interaction among waves that satisfy 

certain trigonometric selection rules. Here, the possibility exists for smaller cloud scale (a 

pair of waves) to transfer potential energy to another azimuthal wave or vice versa. Once 

such a transfer occurs, then the ‘in-scale vertical overturning’ can in principle transfer the 

potential energy of azimuthal waves to the kinetic energy of that scale. This in turn can in 

principle indirectly contribute to the intensity of the hurricane. In these triple product 

nonlinearities, energy exchanges are dictated by selection rules. If three scales m, n, and p 

interact, thenp has to be equal to m+n, m-n or n-m in order for a non-vanishing exchange to 

occur. This is the basis for triad interactions (Krishnamurti et al. 2003). This calls for two 

scales interacting with a third scale resulting in the growth or decay of the potential energy of 

a scale. This invokes sensible heat transfers from (or to) the other two scales or vice versa. 

Thus, intuitively, one possibility is that shorter scales describing the deep cumulus 

convective scales can transfer kinetic energy up the scale to the larger scale wind 

asymmetries of a hurricane. The potential energy generated by heating on cloud scales could 

perhaps be transferred up the scale to the potential energy of the larger scales. That potential 

energy of the larger scales can get converted to kinetic energy of the larger azimuthal scales 

by in-scale vertical overturning. The alternate possibility is that an organization of 

convection along the azimuthal coordinate can directly contribute to the growth of 

azimuthally averaged kinetic energy from the azimuthally averaged potential energy of the 

hurricane, and these upscale nonlinear transfers may not prove to be important for the driving 

of the hurricane scale. A purpose of this paper is to formally compute these interactions

16



among the cloud scales and the hurricane scales towards addressing the hurricane intensity 

issue from such possibilities (see section 5).

viii) (Kt-K,) is the nonlinear exchange of kinetic energy among different scales. This is

another possible exchange of energy among waves. The equation for the kinetic energy 

exchange among different waves is nonlinear, and also invokes triple products. Thus, two 

waves from among the long waves can in principle interact with smaller cloud scales to 

provide nonlinear energy exchanges. These are exchanges among various waves in the 

azimuthal direction. Here the same trigonometric selection rules apply for these energy 

exchanges. For the hurricane intensity problem, we might be interested in the growth of 

kinetic energy of a low wave number such as 1 or 2 at the expense of other pairs of azimuthal 

waves. Triads such as 1, 7 and 8; 1, 8 and 9; 2, 15 and 13; 2, 12 and 10 are possible 

examples that satisfy the selection rules. Thus a pair of scales within the dimensions of 

clouds can in principle transfer energy to the higher wave numbers that describe a hurricane. 

This is a direct way by which a cloud scale can drive a hurricane scale. The possibility exists 

for such energy exchanges to go up or downscale, a formal computation, presented in section 

5, clarifies these issues in the context of the model output, 

ix) (K0 - A:,) - this is an exchange of kinetic energy between the azimuthally averaged flows and

the long azimuthal wave numbers. This is akin to the familiar barotropic energy exchange. It 

invokes the covariance among the azimuthally averaged tangential motion and the eddy 

convergence of flux of momentum. This can go either way depending on the stabilizing or 

the destabilizing nature of the shear flows within the hurricane.
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x) (K0 -Ks) - this is the same kind of energy as described in (ix) above except that shorter

scales replace the azimuthal long waves. The mathematical formulation is the same as for 

(ix) above.

xi) (P0 ■ P,) is the potential energy exchange among azimuthally average flows and azimuthal

long waves. This is analogous to a wave zonal exchange of potential energy. The direction 

of this exchange depends on the radial temperature gradients for wave number 0 and the 

radial transport and convergence of flux of heat (CPT) by the long waves. The signs of 

computations dictate whether this heat transfer is up or down the thermal gradient.

xii) (Po • Pc) is the potential energy exchange among azimuthally averaged flows and shorter

waves. The mathematical treatment of this exchange is presented in Appendix 1 and the 

explanation is the same as (xi) above except that long waves are to be replaced by shorter 

waves.

All these components of energetics presented in this paper were formulated using quasi­

static primitive equations (see Appendix I for mathematical details of the formulation).

5. Results of Computations

a) Angular Momentum budget following inflowing trajectories in the storm relative frame of 

reference

In Fig. 8, we illustrate a trajectory of an air parcel constructed using the motion field (u, 

v, a ) in storm relative coordinates. Also shown (in the blue isopleths) are the isotachs for a 

final map time August 25th at 00 UTC. This trajectory terminates in the vicinity of the velocity 

maxima of the hurricane at 850hPa level. Based on our forecasts this parcel originates on august 

22nd at 00UTC from the 336 hPa level. A three-day motion of the parcel is illustrated here. This 

parcel generally descends from the upper troposphere to the 850hPa level.
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We shall next illustrate in Table 2 the angular momentum budget following a parcel’s 

history. This table shows the parcel’s positions (as a function of time), the parcel’s pressure, the 

pressure torque experienced over 12 hourly parcel motion segments, the angular momentum (M) 

of the parcel, the change in angular momentum (AM) across 12 hourly parcel motion segments, 

the net frictional torque experienced by the parcel along these segments and finally the effects of 

cloud torque in its contribution to the changes of angular momentum of the parcel. The pressure 

torques are generally small and are of the order of 10~6 mV3. The averaged pressure torque over 

12 hourly trajectory segments was both positive and negative. The negative values are related to 

a beta gyre type asymmetry that the parcel encountered to the right of the storm motion where it

3xmoved towards higher pressure, — > 0. The net change in angular momentum for the
50

inflowing parcel is negative throughout, since the parcel was moving closer to r=0 nearly always. 

The frictional torques above the 850 hPa surface arises from horizontal and vertical sub-grid 

scale diffusion in the free atmosphere, while above 850 hPa level these effects were small. The 

cloud torque is another manifestation of explicit frictional torques resolved by the model. These 

again are averaged values over the 12 hourly motion segments. These are based on explicit 

averages over the trajectory segments for the vertical eddy convergence and divergence of flux 

of momentum. The values along the trajectory, over all 12 hourly segments, is positive implying 

that cloud torques contributed to a net divergence of eddy flux of momentum of the parcel. This 

acts to reduce the angular momentum for the inflowing parcel. It is also clear from the table that 

the largest change of the angular momentum (in storm relative coordinates) arises for parcel 

encountering such cloud turbulence.

Explicit friction is that part of the model friction that comes from the parameterization of 

the surface layer and the planetary boundary layer physics. Furthermore, we include the model’s
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vertical diffusion of momentum. These are all explicitly coded within the MM5 model’s 

formulation. We contrast the resolved cloud friction and cloud frictional torques with the “cloud 

torques”. The frictional torques (Fg r) were calculated at each level and interpolated onto the 

space-time segments along the trajectories. The frictional torque largely reflects its contribution 

to loss of outer angular momentum by the surface friction and its vertical disposition. This is 

larger as we approach the storm’s center where the surface winds are stronger. The pressure 

torques in a non-hydrostatic model generally reflects the presence of clouds in the model. The 

pressure of liquid water (overload) and vertical acceleration contribute to vertical acceleration of 

the order of 10"4 to 10'5 ms'2 over such regions. Pressure perturbations of the order of a hPa are 

found in the model output over such regions. The pressure field is not entirely radially 

symmetric but shows some interesting departures, as shown in Fig. 9 where the 3-day forecast of 

seal level pressure distribution for Hurricane Bonnie from the model run is illustrated. Parcels 

passing through such regions encounter large pressure torques. Over the entrance and exit region 

of such deep convective elements the pressure torques tend to be opposite in sign, thus canceling 

out any net significant contribution. The explicit cloud torque turned out to be a major 

contributor to the diminution of the outer angular momentum of inflowing parcels. The essential 

angular momentum of the air at the destination point (at hour 72) is largely influenced by these

cloud torques. The cloud torques are contributed by —r—uw' , where the vertical eddy flux
dz

convergence of momentum is explicitly resolved by the cloud scale motions. A net divergence 

of flux of momentum by the clouds contributes to negative values of (AM)C and a net

diminution of angular momentum along the segments as noted in the trajectory (Table 2). These 

explicitly resolved clouds by the mesoscale model reduce the outer angular momentum 

considerably (by as much as 40%), thus ending up providing an intensity of 45 ms'1 for the
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storm’s highest winds. These back trajectories were deliberately constructed from the regions of 

the strong winds to the storm exterior. We are only showing the history of one parcel here, 

several such trajectories were in fact constructed that essentially confirmed these same results.

Figures 10 a,b,c,d,e illustrate computations relevant to the ‘cloud torques’. Here results 

between hours 48 to 49 of a forecast trajectory are considered. This segment of the one-hour 

trajectory contains roughly 301 sub-intervals over which relevant model output data is illustrated 

here. In Fig. 10a we present the vertical velocity along this cloud element. The vertical velocity 

reaches almost 10 ms"1 near sub-interval 100. This is one of the inner deep convective cloud 

elements of the hurricane. The corresponding values of W'Q' at two vertical levels (500 hPa and 

600 hPa) for this cloud segment are shown in Figs. 10b and 10c respectively. Strong positive 

values of the vertical eddy flux of momentum are of the order of 30 mV1 with an increase of the 

eddy flux at the upper level by roughly 3 units within the cloud. This leads to a net divergence 

of flux of momentum and a measurable cloud torque (negative value) in Fig. lOd. This 

contributes to a sizeable reduction of the absolute angular momentum along the inflowing 

trajectory from the cloud scale turbulence. The largest negative value within the cloud is of the 

order of -90 m2s"3. Cloud turbulence does also contribute to a smaller net increase, 50 units, 

downstream from the region of maximum ascent. This is just one example of the so called 

‘cloud torque’ for a single cloud element. The many simulated deep convective cloud elements 

collectively play an important role in determining the inner angular momentum and thus on the 

storm’s intensity. FigurelOe shows a longer trace along a three hour trajectory (between hours 

48 and 51) of W’V0’ that illustrates the nature of the cloud turbulence in a hurricane model. The 

mean value of W’ V9’ during these 3 hours is around +7 m2 sec ~2, that shows that clouds at this 

level (600 hPa) contribute to a net upward flux of momentum.
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b) Scale Interactions

We have formulated the energetics for a quasi-static system. Since the storm was over 

the ocean, the use of a pressure coordinate was felt quite suitable. The quasi-static components 

of the data sets were easily derived from the model’s earth following sigma to the pressure 

coordinate system. We shall first present the results for these processes that invoke quadratic in­

scale energy conversions. All of the results presented here are in storm-centered cylindrical 

coordinates and are mass integrals between radii rj and rj, around the azimuthal coordinate, and 

between 100 hPa and the earth surface. 

i) Generation of Available Potential Energy

This is measured by the covariances of heating and temperature and is expressed by

where y is a static stability parameter, and 0 is a surface area averaged potential temperature, y 

varies with pressure. The covariance HT can be broken down into in-scale harmonic 

components,

(8)

where o denotes the azimuthally averaged contribution and 1 denotes the first harmonic. Hence,

the net generation can be expressed by H 'Tidm . The results of these computations are
m

shown in Figs. 1 la,b,c,d,e,f. The different panels show the results from forecasts for hours 6 

through 72. Within each panel, the results of computations averaged over cylindrical mass 

elements from r=0 to r=40 km, r=40 km to r=200 km, and r=200 to r=380 km are displayed. 

These carry the mass integrals of the generation term within these domains. Separate histograms

22



are presented for the azimuthally averaged wave number 0, wave numbers 1 and 2, wave 

numbers 0, 1, and 2 and wave numbers 3 through 180. These results show that the largest 

generation occurs at wave number 0. Wave numbers 1 and 2 contribute about one third of the 

total generation of the eddy available potential energy. The contributions from the other scales 

are much smaller. The warm core of the model hurricane extends from roughly r=0 to r=l 80 km. 

The heating within this region and the cooling outside of this region contributes to the hurricane 

scale generations of APE for wave numbers 0, 1, and 2. Clearly, the cloud scale heating 

transcends to the hurricane scales from the organization of convection. This breakdown among 

scales is essentially similar during the entire 72 hours of the model run. There appears to be a 

direct generation of available potential energy on the hurricane scale, this evidently is a result of 

the organization of convection on the hurricane scales. 

ii) Generation of Kinetic Energy from Vertical Overturning

The total contribution of eddy kinetic energy over a mass m is given by:

W'T' <PE,KE> = -Cp ------dm (9)
m P

This is a quadratic non-linearity, hence we can express it as where n denotes

azimuthal wave numbers. Thus, it is possible to separately evaluate the contributions for each 

wave number. We can also separately evaluate the contributions for the azimuthally averaged

component (i.e. wave number zero), i.e. -C [ 
jit

°
 

 
'T»

"dm ■ These are contributions from “in-scale”
p mJ  *p 

vertical overtumings that generate kinetic energy. Since each active deep convective element 

with scales of the order of a few km has its strongest upward and downward motions on the 

cloud scale, we might expect to see a large contribution for these smaller scales. However, the
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organization of convection is more robust than the size of a single cloud, these contributions 

seem to prefer the hurricane scale (i.e. azimuthal wave numbers 0, 1, and 2), reflecting the 

organization of convection. This is shown in Figs. 12a,b,c,d,e,f. The histograms reflect the 

results over the same three regions as in Fig. 11. The different panels (a, b, c, d, e, and f) show 

the results from the forecast data sets for hours 6 through 72 at intervals of 6 hours. The 

histograms in each panel show the energy conversions (potential to kinetic) for wave number 0, 

wave numbers 1 and 2, wave numbers 0, 1, and 2 and the rest of the waves. The results are quite 

similar at all these forecast intervals. The largest contribution is found at the azimuthally 

averaged wave number 0. This shows that clouds have an organization along the circular 

geometry, thus shifting the scale of overturning from the cloud scales (few km) to the hurricane 

scale. The conversion for wave numbers 1 and 2 are about half as large as those for wave 

number 0. If we identify wave numbers 0, 1, and 2 as the hurricane scales, we see a substantial 

conversion of APE into EKE on this scale, again attributed to this large-scale organization of 

convection. The contribution for wave numbers 3 through 180 was in fact quite small and even 

fluctuating in sign for different smaller scales. The energetics in the wave number domain for 

the middle latitude zonally averaged jet, wave number 0, is opposite to that for a hurricanes 

azimuthal wave number 0. Waves provide energy to the wave number 0 in the former case 

whereas they seem to remove the energy from the hurricane circulation. The former is generally 

regarded as a low Rossby number phenomenon whereas the latter is clearly one where the 

Rossby number exceeds one.

iii) Energy exchanges due to non-linear triad interactions

In Figs. 13a,b we show the gain or loss of energy for wave numbers 1 and 2 for the eddy 

kinetic energy (Fig. 13a) and eddy potential energy (Fig. 13b) in units m2s'3, that arise from
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interactions of these scales with all other permitted scales. Along the abscissa we show the 

forecast hours. The results shown here are vertically integrated values through the troposphere 

over the three different regions, i.e., inner, middle and outer radii bound. The obvious result is a 

net loss of energy at all radii for the hurricane scale (wave numbers 1 and 2) from these scale 

interactions. The largest losses occur at hour 72 when the storm had the strongest intensity. The 

cascade is strongest for wave number 1 when it interacts with other permitted scales. 

iv) Summary of overall energy exchanges in the azimuthal wave number domain

The overall results of the energy exchanges are summarized in Fig. 14. These are 72 

hour averages during this entire time Bonnie had hurricane wind strength. These are mass 

averaged energy exchanges based on the equations given in Appendix 1. The vertical integrals 

cover the atmosphere between the ocean surface and the 100 hPa level. Three colors distinguish 

the results over different radial belts: Red denotes an inner area 0 to 40 km. Green denotes a 

fast wind region 40-200 km. Blue denotes an outer area 200-380 km. All units of energy 

exchange are normalized to m2/s3. Three categories of energy exchange are grouped here: (a) 

Azimuthally averaged wave number 0, (b) Azimuthal long waves, wave numbers 1 and 2 and (c) 

Azimuthal short waves, wave numbers 3 to 180. The first two categories are designated as the 

hurricane scales, the third one is arbitrarily labeled as the cloud scales although this naming is 

not entirely correct.

For all of these scales the generation of available potential energy from heating and the 

conversion of available potential energy to eddy kinetic energy is described by the in-scale 

processes. These are interestingly the largest in the inner 40 km radii for wave number 0. That 

reflects the hurricane scale organization of heating and of the covariances of heating and 

temperature, and vertical velocity and temperature. This arises from the organization of clouds
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along azimuthal wave number 0. The next in magnitude are contribution for the long waves 

where again clearly there is a contribution form the organization of clouds on the azimuthal wave 

numbers 1 and 2. The combined contribution for wave numbers 3 to 180 is less than 10 percent 

of those for wave number 0. The largest values of the generation of PE and its conversion to KE 

occur at the inner radii 0 < r < 40 km. This is the region of the heaviest rains in the MM5 

model’s simulation of Hurricane Bonnie. The values fall off rapidly as we proceed to the outer 

radial belts.

The barotropic energy exchange comprises kinetic energy exchange from wave number 0 

to the other waves. The long waves essentially extract energy from the azimuthally averaged 

wave number 0, whereas the so-called cloud scales in fact supply energy to wave number 0. 

Among these, some of the largest barotropic energy exchanges are from the wave number 0 to 

the long waves. At the different radial belts these values range from 78.6 to 58.4 to 30.75 units. 

This shows that the hurricane scale (azimuthally averaged wave number 0) is bartropically 

unstable to the long wave scales (wave numbers 1 and 2). Thus we can infer that the large-scale 

asymmetries in the hurricane’s intense motion can arise from barotropic dynamics - that is in 

addition to the possible translation asymmetry, which arise from the motion of a symmetric 

vortex in a uniform steering flow. This kinetic energy exchange from the wave number 0 to the 

long wave is largest in the inner radial belt 0 to 40 km where the maxima of the cyclonic 

vorticity of the hurricane reside. The kinetic energy exchange from the cloud scales to the wave 

number 0 is largest at the outer radii r >200 km. As we move to these outer radii, the cloud

scales exhibit an increasing convergence of flux of momentum VrV^ that seems to increase its 

contribution for the barotropic stabilization.
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The other areas of energy exchange are the kinetic to kinetic and potential-to-potential. 

These are the nonlinear three-component exchanges among different scales. The arrows 

connecting Kt to Kc and Pi to Pc show the collective exchanges from the long to the sort wave 

scales summarized here. This is essentially a cascading process where energy is conveyed from 

the larger to the smaller scales. The kinetic energy exchange Kt to Kc is much larger in 

magnitude compared to those of Pt to Pc. The inner radial belt 0 <r <40 km carries the largest 

non linear energy transfers. There are also potential energy exchanges between the azimuthally 

averaged wavenumber 0 and the waves. Those exchanges are all directed from waves to the 

wave number 0. The largest such exchanges are at the inner radii 0<r<40 km. The magnitude of 

the energy transferred by the long waves are larger compared to that from the short waves to the 

zonal. These exchanges are related to the radial transfer of heat (up the gradient) towards wave 

number zero. The longer waves seem more efficient in reinforcing the warm core of the 

hurricane in this sense. This is the overall energy exchange scenario from the very high- 

resolution simulation of hurricane Bonnie of 1998.

6. Concluding Remarks

The hurricane intensity issue is among the major unsolved scientific problems presently. 

This paper merely presents two possible frameworks - scale interactions among clouds and 

hurricane, and an angular momentum perspective for this problem. The deep convective 

elements within a hurricane have dimension of the order of a few km each. The role of cloud 

scale heating, generation of available potential energy and its transformation to eddy kinetic 

energy can only be an in-scale (i.e. individual cloud scale) process since these processes involve 

quadratic non-linearities. The quadratic non-linearities are the covariances among heating and 

temperature, and vertical velocity and temperature. If that were so, then the only avenue for that
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energy to drive the hurricane would be through non-linear triad interactions between kinetic and 

kinetic energy, and available potential to available potential energy among cloud scales and the 

hurricane scale. That naive picture is not what is borne out by the computations based on data 

sets derived from meso-scale non-hydrostatic microphysical models. The key finding is the 

organization of convection on the azimuthally averaged wave number 0 and the large scale 

asymmetric scales of the hurricane, i.e. wave numbers 1 and 2 precedes all that. Those scales are 

inferred from the decomposition of the liquid water mixing ratio fields that carry clearly the deep 

convective cloud signatures. The generation of potential energy and its transformation to kinetic 

energy thus takes place directly on the larger scales of the hurricane. This is brought about by 

the organization of convection - a topic that is not addressed in this paper. The other major 

component in the framework of scale interactions is the energy exchanges among scales via triad 

interactions. These are the exchanges from kinetic to kinetic and available to available potential 

energies. Those results among triplet of waves (hurricane scales and other scales) show largely a 

cascade of energy, i.e., hurricane scales lose energy when they interact with other scales. The 

issue of organization of convection can be addressed by starting from an unorganized pre­

hurricane state and by a continual monitoring of the spectral form of the liquid water mixing 

ratio and its interactions with the rest of dynamics, physics and microphysics. Such a study can 

provide insights on the scale interactions that lead to an organization of convection. This study 

required a high resolution (up to 1 km) multiply-nested regional meso-scale model that resolves 

clouds explicitly. A recent version of the NCAR MM5 model (non-hydrostatic with 

microphysics) was used in this study.

A second aspect of this study was on the angular momentum perspective, on the torques 

that diminish the angular momentum along inflowing trajectories of air parcels. They reveal that
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“cloud torques” play a major role in this diminution of outer angular momentum and in the 

eventual intensity of the hurricane that it attains. Since all of these findings are based on model 

output data sets, future studies on model sensitivity are needed on areas that impact the intensity 

the most. These are the vertical overtumings by organized convection and the cloud torques. 

This suggests that even details of microphysical parameterizations within clouds might require 

careful testing within these explicitly cloud resolving meso-scale models. Field experiments that 

carry out detailed measurements of microphysical parameters that affect the life cycle of clouds 

may also provide insights for model sensitivity studies.

Understanding of hurricane intensity may require a rather large model sensitivity studies 

on resolution (horizontal and vertical), data coverage, data assimilation, non convective rain 

(definition of threshold relative humidity), PBL physics, radiative transfer and clouds, and 

parameterizations within the equations of water vapor, cloud water, rain water, cloud ice, snow, 

groupel, and number concentrations of cloud ice.
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Appendix 1

The equations of motion in the storm-centered cylindrical coordinate system are

(1)

(2)

and the continuity equation is

dvg dvr vr dco (3)
rdO dr r dp

The independent variables in this coordinate system are the azimuthal angle 0, the radial distance 

from the center r, and the pressure p. The tangential and radial winds are v0 (positive 

anticlockwise) and vr (positive outward), respectively. The vertical velocity in pressure 

coordinates is co ,/is the Coriolis parameter, gz is the geopotential height, and F0and Frare the 

tangential and radial components of the frictional force per unit mass. Any of the dependent 

variables can be subjected to Fourier transform along the azimuthal (6) direction:

oo

(4)

where the complex Fourier coefficients F(n) are given by

(5)
o

The Fourier transform of the product of two functions is given by

(6)
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Let us consider only the non-linear terms in Eqs. (1) and (2). If we multiply both equations by 

]/2n e~'n6, integrate along an azimuthal circle, and apply (4), (5) and (6), we obtain

dVg(n) _ y- imVg(m) ' dVe(m) | Vg(m) dVg(m)— I Vg{n-m) + Vr(n-m) + Q.(n - m), (7)
dt dr r dp

<K(rO=_Y (imVr(m) V0(m) 
(8)dt “M r dr dpm=-oo v

where Ke(«), Kr(«), and Q(«)are the nth Fourier coefficients of vg, vr, and co. From the

continuity equation we get 

dQ(n) inVg(n) dVr(n) Vr(n) = 0. (9)
dp dr

By multiplying (7) and (8) with V6{-n)md Vr(-n), and the complex conjugates of (7) and (8) 

with Vg («) and Vr («), respectively, we obtain

d\Vg(nf y* lm Ve ^ ■ (Vg (-n)Vg (n-m) + Vg (n)Ve (-n - mj)
dt ' r

+ dVg(m) | Vg{m) (Vff (~n)Vr (n-m) + Ve (n)Vr (-« - mj) (10)
dr r

+ ^ - m) + V0 (n)Q(-n - m))
dp

d\Vr(n)\2 imVr{m) Vg(m)—Z (Vr (-n)Vg (n-m)+ Vr (n)Ve (-n - w))
dt

(Vr (~n)yr (« - «) + («)L ("« " ™)) (H)
dr

+ gKr(,W) (Fr (-«)Q(« - m) + Kr (n)Q(-* - /«)) 
dp

Now if we apply (9) and add (10) and (11), we obtain an expression for the local rate of change 

of kinetic energy of wave number n due to non-linear interactions as:
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/ A
dK{n) = Z W ^K'O + 'T *>,«) +-4^ (m,«) 

dt Vr V'1T V r

f \ (12)
+ Vr(m) -4' dv (m,«) + T (m,n) + 'V ^(w,«)---- W (m,n)

^ r 0 —89-  v.—d-r  a)—d—p r

r or op

where = A(n - m)B(-n) + A(-n - m)B(n).

The last term in (12) vanishes upon integration from top to bottom of the atmosphere, provided 

w{p,op) = co{pbc>llom) = 0. With a similar approach, we can find the rate of change of potential

energy due to non-linear interactions in a cylindrical coordinate system. The local change in

temperature is given by

dT dT dT dT RT Q 
dt 0 rd6 dr dp C p C

If we denote the Fourier transform of T as B(n), multiply both equations by — e ,n0, integrate
2 n

along an azimuthal circle, and apply (4), (5) and (6), and consider only the non-linear terms, we 

obtain

55(h) imB{m)imoym  dB{m) fdB(m) RB(mE--------- ye(n-m)- '-Vr(n-m) + Q(n-m). (14)
dt drr dp CpPpr y

Following the same procedure as for (13), and defining the available potential energy as

1 r 50 v‘
P{n) = Cpp\B(n)\2, where n=------ is the static stability factor, we obtain

dpcpP

dP(n) 'l R '
= Cprj Z B(m) -T ffr{m,n) + x¥ BT(m,n) + x¥ r7T(m,n) + --—'¥aiT(m,n) 

dt mm*=-oo 0  Vr v‘Te V'lv •% CvP (15)

- ~rB{m)mv T (n, 5(/n)T„r
r dr dp
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as the expression for the local rate of change of the available potential energy of frequency n due 

to non-linear interactions with frequencies m and n±m. Similarly to (12), the last term vanishes 

upon integration over the depth of the atmosphere.

For azimuthal wave number zero the generation of available potential energy is given by:

G(P,)= \r\H- H}\r-T dm (16)
m

where y is a static stability parameter defined by

9 [ R 1 (17)
T

The double over bars indicate a horizontal area average and the square bracket is an azimuthal 

mean. H is the heating rate and T is the temperature. The generation at any wave number is 

simply expressed by

G{n)=\yH„Tndm O8)
m

This is what is used for each wave within the long and the shorter scale waves. For azimuthal 

wave number zero the conversion of potential to kinetic energy is given by:

{'VKj/ \ —Jc,r —k —® ]j k — T
-2—

 ]
~im

(19)

and for all other scales:

{p.-k.)=-
m
Jc,sZL<fei <2°)

Here (0 is the vertical velocity. The exchange among azimuthally averaged flows and other 

waves are expressed by the following equations:
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<*«»•*(.»- ̂f
 
 £«>„

V 
<">—a £dcp  cos (p a d<p dp +®-wfop a

a dtp

(21)and

< P(0)P(n) >= \\Y\Cpri<S>Tv(n)j- + np dO"''
®r.(»)‘ + —aT+rj{T"h"}MM (22)

M L"=> M dp

where <&ab(n) = A(n)B(-n)+ A(-n)B(n)

These expressions (21) and (22) are used both for long and short wave exchanges with the 

azimuthally averaged flows.
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Figure Captions

Fig. 1: Observed and model predicted track of Hurricane Bonnie. Boxes in the illustration 
demonstrate the MM5 model nested grids at 27, 9, 3 and 1 km respectively.

Fig. 2. Visible Geostationary Operational Environmental Satellite-8(GOES-8) Satellite image of 
Hurricane Bonnie at 1615 UTC 23 Aug 1998.

Fig. 3. Initial distribution of (a) Sea Level Pressure (hPa), (b) Tangential Wind (ms'1) and (c) 
Angular Momentum (mV) of Hurricane Bonnie, valid on August 22, 1998 0000 UTC.

Fig. 4: Streamlines at 850 hPa derived from model output at (a) day-1, (b) day-2 and (c) day-3 of 
forecasts.

Fig. 5. Beta gyre structure for Hurricane Bonnie. Shown is the sea level pressure (hPa) 
distribution after removing the zonal (azimuthal) mean values.

Fig. 6. Distribution of rainwater mixing ratio (kg/kg) at 850 hPa for Hurricane Bonnie, (a) Day- 
2 Forecast, and (b) Day-3 Forecast.

Fig. 7. Power spectrum of variance of the liquid water mixing ratio at (a) initial time (t=l) and at 
(b) 24-hr forecast (t=2) for three different radii (0-40 km, the inner region; 40-200 km, the high 
wind region; and 200-380 km, the outer region) of Hurricane Bonnie.

Fig. 8. 72-hr 3-D backward trajectory of maximum wind at 850 hPa (ms'1) for Hurricane Bonnie. 
Shown here is a trajectory terminating at the wind maxima in the vicinity of the center of the 
hurricane at the end of the 72-hr forecast. Isopleths in blue indicate the maximum wind 
distribution at 72-hr forecast time.

Fig. 9. 3-day sea level pressure (hPa) forecast of Hurricane Bonnie

Fig. 10. (a) Vertical velocity (ms'1) at 500 hPa, (b) vertical eddy flux of momentum (units) at 
500 hPa, (c) vertical eddy flux of momentum at 600 hPa and (d) cloud torque (units) during 
every time step of a one-hour forecast between 48th and 49th hour of model integration.

Fig. 11: Generation of available potential energy for Hurricane Bonnie. Three different 
histograms in each panel represent three regions - inner area (0-40 km), fast winds (40-200 km) 
and outer area (200-380 km). The panels from top to bottom are at different forecast times (a) 12 
hr, (b) 24 hr, (c) 36 hr, (d) 48 hr, (e) 60 hr and (f) 72 hr of the model output.

Fig. 12: Generation of Kinetic Energy by vertical overturning for Hurricane Bonnie. Three 
different histograms in each panel represent three regions - inner area (0-40 km), fast winds (40- 
200 km) and outer area (200-380 km). The panels from top to bottom are at different forecast 
times (a) 12 hr, (b) 24 hr, (c) 36 hr, (d) 48 hr, (e) 60 hr and (f) 72 hr of the model output.
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Fig. 13. Rate of change of (a) kinetic and (b) potential energy of wave numbers n=l and n=2 due 
to interactions with pairs of waves with wave numbers (l,m) >2. Units are 10‘5 m2s3. The 
forecast hour is indicated along the abscissa.

Fig. 14. Summary of energy exchange computations resulting in the final intensity of Hurricane 
Bonnie. Different colors in the numbers represent three different regions of computations (Red 
for inner area between 0 and 40 km, Green for fast wind region between 40 and 200 km and Blue 
for outer area between 200 and 380 km of radius). Arrow marks indicate the direction of energy 
exchange.

List of Tables:

Table 1. List of Acronyms

Table 2. Values of different torques along the path of the 3-D trajectories of wind maximum at 
850 hPa for Hurricane Bonnie.
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3 BN

Fig. 1: Observed and model predicted track of Hurricane Bonnie. Boxes in the illustration 
demonstrate the MM5 model nested grids at (A) 27, (B) 9, (C) 3 and (D) 1 km respectively.
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Fig. 2. Visible Geostationary Operational Environmental Satellite-8(GOES-8) Satellite image of 
Hurricane Bonnie at 1615 UTC 23 Aug 1998.
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(b) Tangential wind (m3 1) 850hPa

(c) Angular Momentum(mV ')»107 S50hPa

(a) Sea Level Pressure (hPa)

Fig. 3. Initial distribution of (a) Sea Level Pressure (hPa), (b) Tangential Wind (ms'1) and (c) 
Angular Momentum (mV1) ofHurricane Bonnie, valid on August 22, 1998 0000 UTC.
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(a) Fcsl Day 1 (b) Feat Day 2

Fig. 4: Streamlines at 850 hPa derived from model output at (a) day-1, (b) day-2 and (c) day-3 of 
forecasts.
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Fig. 5. Beta gyre structure for Hurricane Bonnie. Shown is the sea level pressure (hPa) 
distribution after removing the zonal (azimuthal) mean values.
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Fig. 6. Distribution of rainwater mixing ratio (kg/kg) at 850 hPa for (a) day-2 and (b) day-3 
forecasts of Hurricane Bonnie.
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Fig. 8. 72-hr 3-D backward trajectory of maximum wind at 850 hPa (ms'1) for Hurricane
Bonnie. Shown here is a trajectory terminating at the wind maxima in the vicinity of the center 
of the hurricane at the end of the 72-hr forecast. Isopleths in blue indicate the maximum wind 
distribution at 72-hr forecast time.
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(b) Feat Day 2(a) Fcst Day 1

Fig. 9. 3-day sea level pressure (hPa) forecast of Hurricane Bonnie
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Fig. 10. (a) Vertical velocity (ms'1) at 500 hPa, (b) vertical eddy flux of momentum (units) at 500 
hPa, (c) vertical eddy flux of momentum at 600 hPa, (d) cloud torque (units) during every time 
step of a one-hour forecast between 48th and 49th hour of model integration, (e) is same as (c) but 
for a longer duration from 48th to 51st hour of integration.
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Fig. 11. Generation of available potential energy for Hurricane Bonnie. Three different 
histograms in each panel represent three regions - inner area (0-40 km), fast winds (40-200 km) 
and outer area (200-380 km). The panels from top to bottom are at different forecast times (a) 12 
hr, (b) 24 hr, (c) 36 hr, (d) 48 hr, (e) 60 hr and (f) 72 hr of the model output.
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<PE,KE> 24Hr Forecast (23 Aug ‘98 00Z)<PE,KE> 12Hr Forecast (22 Aug ’98 12Z)
30 ----------------------- -------------------------------

□ Inner Area (0-40km)
25 ~ Q Fast Winds (40-200 km)

-5 J............................................................... ................——
Wave No. 0 Waves 1,2 Waves 0,1,2 Waves 3 to

180
180

<PE,KE> 36Hr Forecast (23 Aug 98 12Z) <PE,KE> 48Hr Forecast (24 Aug '98 00Z)

180

Wave No. 0 Waves 1,2 Waves 0,1,2 Waves 3 to
180

<PE,KE> 72Hr Forecast (25 Aug '98 00Z)

180

Fig. 12: Generation of Kinetic Energy by vertical overturning for Hurricane Bonnie. Three 
different histograms in each panel represent three regions - inner area (0-40 km), fast winds (40- 
200 km) and outer area (200-380 km). The panels from top to bottom are at different forecast 
times (a) 12 hr, (b) 24 hr, (c) 36 hr, (d) 48 hr, (e) 60 hr and (f) 72 hr of the model output.
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Fig. 13. Rate of change of (a) kinetic and (b) potential energy of wave numbers n=l and n-2 due 
to interactions with pairs of waves with wave numbers (l,m) >2. Units are 10' ms The 
forecast hour is indicated along the abscissa.
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Fig. 14. Summary of energy exchange computations resulting in the final intensity of Hurricane 
Bonnie. Different colors in the numbers represent three different regions of computations (Red 
for inner area between 0 and 40 km, Green for fast wind region between 40 and 200 km and Blue 
for outer area between 200 and 380 km of radius). Arrow marks indicate the direction of energy 
exchange.
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Table 1. List of Acronyms

MM5 5th Generation NCAR-PSU Meso-Scale Model

NCAR National Center for Atmospheric Research

PSU Pennsylvania State University

ECMWF European Centre for Medium Range Weather Forecasts

CAMEX Convection and Moisture Experiment

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

LASE LIDAR Atmospheric Sensing Experiment

UTC Universal Time Constant

FSU Florida State University

TRMM Tropical Rainfall Measuring Mission

DMSP Defense Meteorological Satellite Program

PBL Planetary Boundary Layer

MRF Medium Range Forecasting
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Table 2. Values of different torques along the path of the 3-D trajectory of wind maximum at 
850 hPa for Hurricane Bonnie.

Fcst Hrs 00 12 24 36 48 60 72

Position of -68.3272 -69.953 -68.9196 -70.8142 71.3739 -72.3642 -72.1295
Vmax at 22.5838 25.5663 25.1711 26.6084 27.6505 29.483220.7498
850 hPa 
Pressure of
the 336 300 376 726 837 861 850
Parcel (hPa)

Pressure
Torque *10~4 .0214 -.0571 -.0741 -.0116 -.0063 -.0045 .0022

Angular
Momentum 1.1630 1.1374 .9722 .7471 .6043 .4213 .2282
*i0-4

AM *10'4 -.0256 -.1652 -.2251 -.1428 - 1830 -.1931

Frictional
Torque *10'4 .0004 .0008 .0008 .0005 .0012 .0025 .0034

Cloud
Torque *10 ‘4 .0474 .1089 .1317 .1895 1779 .1911

56


	Structure Bookmark
	QC851.F5no.2004-03




